

UNIVERSITY OF PANNONIA

COURSE DATASHEET

Semester: 2014/15/2

Course: Physical Chemistry III.

Code: VEMKFKB265V

Responsible department: Department of Physical Chemistry

Department code: MKFK

Responsible instructor: dr. Dezső Boda

Course objectives:

To make proficiency in experimental work and deepening knowledges in physical chemistry by experiments and problem solving.

Course content:

1. Heat of neutralistaion. The heat of an acid-base reaction is determined in an adiabatic calorimeter by manual or PC controlled method. 2. Ratio of the heat capacities (Poisson constant) by Kundt's method. The velocity of sound in a gas is determined by the measurement of wave-length via resonance method. The Poisson constant is calculated from the measured data. 3. Vapour-liquid equilibrium in a binary mixture. The equilibrium compositions of the vapour and liquid phases are measured in a binary mixture at constant pressure. The molar fractions are determined by refractometry. 4. Vapour pressure of pure liquids. The vapour pressure of a pure liquid is measured as the function of temperature by isoteniscope method. The heat of vaporisation is calculated using the Clausius-Clapeyron equation. 5. Thermal analysis. The composition of binary systems are determined by freezing point-composition diagrams. The freezing points of the mixtures are measured via cooling ourves. 6. Conductivity of electrolyte solutions. Conductivities of a weak and a strong electrolyte are measured as a function of concentration. The dissociation constant of the weak electrolyte is calculated using the Ostwald's dilution law, 7. Inversion rate of sucrose. The rate constant of the acid-catalysed pseudo-first order reaction is determined. The reaction is followed by optical rotation measurement. 8. Rate of saponification of ethyl acetate. The second order reaction is followed by conductometry. The rate constant is calculated from the conductivity-time data. The activation energy is also calculated repeating the measurement at an other temperature. 9. Specific heat capacity of solides. The specific heat capacity of solid bodies are determined using the Newtonion law of cooling. 10. Partition of a solute between two immiscible liquids. The partition of acetic acid is investigated between two immiscible liquids (water and organic solvent). The equilibrium concentrations are determined by titrátion (water plase) or calculated using mass balance (organic phase). 11. Overpotential of hydrogen evolution. Tafel paramterers of hydrogen evolution on Pt electrode are determined in acidic solutions via steady state polaristion curves. 12. Molar polarisation and molar refraction. Molar polarisation and refraction of liquids are determined by measuring the relative permittivity, refractive index and density. 13. Separation of dyes by cromatography. Two components of a dye mixture are separated via Al2O3 adsorption column using elution technic. The concentration of the separated dye solution are determined by spectrophotometry. 14. Determination of pH by different methods. The pH of solutions are determined via pH sensitive electrodes. (H2/Pt,quinhidrone, glass electrodes). 15. Solubility product. Solubility product of sparingly soluble salts are determined by measuring the e.m.f. of a suitable concentration cell. 16. Determination of the thickness of an AgI layer. The thickness of a galvanic deposited AgI layer is determined

UNIVERSITY OF PANNONIA

COURSE DATASHEET

Semester: 2014/15/2

Course: Physical Chemistry III.

Code: VEMKFKB265V

Responsible department: Department of Physical Chemistry

Department code: MKFK

Responsible instructor: dr. Dezső Boda

Course content:

by chronopotentiometry. 17. Study of a redox electrode. The caracteristic properties of a redox system are determined by measuring the e.m.f. of a suitable galvanic cell. 18. Thermodynamic properties of an electrochemical reaction: The electromotive force of galvanic cells and the change of the e.m.f. with temperature are measured to obtain thermodynamic quantities (?G, ?S, ?H) for the cell reaction. 19. Electrolyte activity. The mean activity coefficients of an electrolyte solution are determined as function of concentration by measuring the e.m.f. of suitable concentration cells. 20. Galvanic corrosion. Evans-diagrams of galvanic corrosion systems are determined as function of pH by galvanostatic method. The maximum current density and potential of corrosion are determined via Evans diagrams.

Requirements, evaluation and grading:

The experiments have to be performed, the measurements and calculations have to be reported. The acceptance condition of the semester is performing and reporting 10 of 19 experiments. The mark of the practice is based on the total points given for the measurements and the oral or written tests about the theoretical backgrounds. The conditions of the pass mark are the 50% of the attainable maximum points, and a satisfactory level of the tests in avera

Required and recommended readings:

1. Liszi, J.: Fizikai kémia, Veszprém, 1993. Kézirat. 2. Tanszéki munkaközösség: Fizikai kémiai laboratóriumi gyakorlatok, Veszprém, 2000. Kézirat.