V P

UNIVERSITY OF PANNONIA

COURSE DATASHEET

Semester: 2015/16/1

Course: Advanced process modeling

Code: VEMKFOM458M

Responsible department: Department of Process Engineering

Department code: MKFO

Responsible instructor: dr. Sándor Németh

Course objectives:

Introducing the advanced modelling methods of the of chemical processes and units.

Course content:

Introduction. Review of the modeling of chemical technologies. Hierarchy, tendency and rigorous model, model reduction, information transfer

Modeling and analysis of dynamic system; treatment of time hierarchy

Development of the models of dynamic systems; Solution of the dynamic models

Dynamic simulators: structure of the software; main elements; application of the software

Investigation of single and multi phase units: gas-liquid systems

Investigation of multi phase units: gas-solid and liquid-solid systems

Investigation of multi phase units: gas-liquid-solid systems

Introduction of the modeling of typical chemical system: modeling of chemical, bio and polymerization reactors

Introduction of the modeling of typical chemical system: modeling of crystallization system

Investigation of fluid flow, residence time distribution, typical models

Review of the CFD models. Solution of the CFD models

Structure of the CFD simulators

Requirements, evaluation and grading:

Oral examination.

Required and recommended readings:

B. Wayne Bequette: Process Dynamics, Modeling, Analysis and Simulation, Prentice Hall PTR, 1998

UNIVERSITY OF PANNONIA

COURSE DATASHEET

Semester: 2015/16/1

Course: Advanced process modeling

Code: VEMKFOM458M

Responsible department: Department of Process Engineering

Department code: MKFO

Responsible instructor: dr. Sándor Németh

Required and recommended readings:

Levenspiel: Chemical Reaction Engineering, Wiley, 1972

Jakobsen: Chemical Reactor Modeling, Multiphase Reactive Flows, Springer, 2008